Experimentation in trading
For: Robo-Advisors & Systematic Investing / Vasant Dhar
Introductions

• Me
 • Quant trader
 • Market making, stocks
 • Experimental optimization

• You
 • Studying
 • Trading
 • Modeling
 • Backtesting
Quant trading

Execution

• Agency: no position risk

• Big customer order ==> many small trades

• Thousands of trades / day
Quant trading

High-frequency market making (HFMM)

• Principal: Small positions for minutes
• Continuous quoting
• Thousands of trades / day
Quant trading

Statistical arbitrage

• Principal: Larger positions for hours to many days
• Opportunistic trade selection
• Tens - hundreds of trades / day
Experimentation

- Compare performance in **live trading**
- Returns predictions incomplete
 - risk, liquidity, capital, preferences
- Simulation (aka backtest) too hard
 - Market reaction / impact
 - Latencies
 - Complexity
Experimentation: Complexity

- Example: US stock market
 - 13 lit exchanges
 - continuous book, auctions, blind bidding, block trading, internalization
 - orders: limit, market, IOC, FOK, AON, ISO, hide & slide, hidden, post-only
Experimental methods

- Experimental methods b/c
 - Evaluation is expensive: $$/time/risk
 - Evaluation is uncertain (noisy)
- Experimental methods
 - Minimize expense
 - Minimize uncertainty
Experimental methods

• Without experimental method
 • Deploy new model, make money
 • ==> “My new model is great!”

• With experimental method
 • Run new and old models side-by-side
 • \(P\{\text{new beats old}\} = 0.53, \text{deltaPnL} = 700 \pm 2200 \)
 • ==> “My new model isn’t \textit{bad}.”
Experimentation pervasive

- Medicine
- Psychology
- Behavioral Economics
- Web search
- Online advertising
- Social media
- Food engineering
- Materials science
- Social science
- Manufacturing
- Consumer product design
Example: HFMM A/B test

- Scenario: HTF strategy
 - A: Existing model, across 100 stocks
 - B: Your new model
- Model B looks better than Model A
 - Lower out-of-sample RMSE
 - Higher PnL in simulations
- Next: A/B test in live trading
Example: HFMM A/B test

Design
Determine number of measurements to take

Measure
Trade and measure PnL

Analyze
Decide whether to accept or reject B version
Example: HFMM A/B test

- Design:
 - Which stocks will run Model A, Model B?
 - How many days will this run?
- Measure:
 - Trade and record pnl by stock, day: $p_{s,d}$
- Analyze:
 - Which is better A or B?
 - Significantly better?
Design: Randomization

- Randomly assign 50 stocks to Model B, $\chi_B = 1$
- Assign other 50 to Model A, $\chi_B = 0$
- Experiment measures $corr(p_{s,d}, \chi_B)$
Design: Randomization

- Correlation w/anything else is confounder bias
 - Ex: All tech stocks in A, all energy stocks in B
 - Ex: High-liquidity stocks in A, low-liquidity stocks in B
 - Ex: …

- Randomization removes* confounder bias
 - Even if you don’t know the confounders

*“removes” == “aims to minimize”
Design: Replication

- PnL is noisy
- Replication: Avg. over multiple days

\[\mu = \frac{\sum d P_d}{N} \]

\[se = \sqrt{\frac{\sum (p_d - \mu_d)^2}{N}} = \frac{\sigma}{\sqrt{N}} \]

- Replication decreases “noise” as \(1/\sqrt{N}\)
Design: Replication

• Before experiment

1. Estimate se ← Data
2. Specify minimum interesting δ_{min} ← Subjective
3. Calculate N
Design: Find N

• Some analysis:
 • Limit false positives (5%)
 • Limit false negatives (20%)

\[N \geq \left(\frac{2.8se}{\delta_{\text{min}}} \right)^2 \]

NB: Quadratic

• Typically 1-2 weeks for real experiments
Measure

- Trade!
- Start small for safety
- Stop if *any* metrics look very bad / different
 - PnL terrible — or wonderful!
 - Trading way too little / too much
 - Sending too many / too few orders
- Log everything, record $p_{s,d}$
Analyze

• Which model earned more PnL?

\[\Delta_{PnL} = \mu_B - \mu_A \]

• Enough to care?

\[\Delta_{PnL} > \delta_{min} \]

• Statistically significantly more?

\[t = \frac{\Delta_{PnL}}{se_{PnL}} > 1.64 \]
Measure: Warning

- Plan: Wait N days, then ask “Is $t > 1.64$?”

- Why not just check every day?
 - Stop when $t > 1.64$? ➡️ Don’t do this!
 - Many false positives!

- You can monitor t — Just don’t stop based on t
Bayesian optimization

• Modern, flexible, efficient method(s)
• A.K.A.
 • Adaptive experimentation
 • Black box optimization
 • Surrogate optimization
 • Model-based optimization
Bayesian optimization

- Can compare A, B
- Also: A, B, C, D, ...
- Also: 1, 2, 3, ...
- Also: $[0,1], [0,1]^D$
- Also: $\{A, B, C, \ldots\} \otimes \{a, b, c, \ldots\} \otimes \{1, 2, 3, \ldots\} \otimes [0,1]^D$
- IOW: BO can optimize your strategy’s parameters.
Bayesian optimization

- Other uses:
 - Hyperparameter optimization (HPO) for supervised learning models
 - NNs, trees
 - Optimize parameters of strategy in simulation
- BO takes longer to calculate a design …
 - Compared to, ex., BFGS, CMA-ES
- … but requires fewer experiments overall
Bayesian optimization: Design

- Fit a surrogate:
 \[y(x) = \text{PnL(parameters)} \]

- Usually Gaussian process regression (GPR)

- Then, maximize \(y(x) \) over \(x \):
 \[x = \arg\max_x E[f(x)] \]

- **BUT**: Surrogate is poor b/c so few measurements
Bayesian optimization: Design

- Instead:

\[
x = \arg\max_x \left[E[f(x)] + \sqrt{\text{VAR}[f(x)]] \right]
\]

- GPR outputs \(E[f(x)] \) and \(\text{VAR}[f(x)] \)

- Acquisition function: \(E[f(x)] + \sqrt{\text{VAR}[f(x)]} \)

- Exploration improves surrogate
Bayesian optimization: Measurement

- Same as before
- Go trade
Bayesian optimization: Analysis

- Have you exhausted your budget for experimentation?
- If not, rebuild GPR, design again
Bayesian optimization

- **Mixed variable types**: Continuous, ordinal (integer), and categorical (boolean)
- **Multiple metrics**: PnL, risk, volume, order rate, … simultaneously
- **Multiple fidelities**: Combine simulator results w/live results
- **Constraints**: Limit risk, capital, market participation
- **Arbitrary measurements**: Build surrogate from all available measurements

- You build your surrogate as a model of your whole trade.
Bayesian optimization: Tools

- Open source: botorch.org
 - SKLearn: Supervised learning :: BoTorch: Bayesian optimization
 - Flexible, powerful modeling toolkit
- cogneato.xyz
 - User-friendly
 - Works with a spreadsheet or Pandas
 - Simple, but produces good designs
Bayesian optimization: Summary

- Surrogate models trade
- Acquisition optimization designs experiments
- Iterate until done