Experimental Optimization in Quantitative Trading For: Robo-Advisors & Systematic Investing / Vasant Dhar

David Sweet

Introductions

- Me
 - Quant trader
 - Market making, stocks
 - Experimental optimization

- You
 - Trading
 - Supervised Learning?
 - Backtesting/simulation?
 - Reinforcement learning?
 - ChatGPT?

Quant trading

Execution

- Agency: no position risk
- Big customer order ===> many small trades
- Thousands of trades / day

Quant trading

High-frequency market making (HFMM)

- Principal: Small positions for ~10 seconds
- Continuous quoting
- Thousands of trades / day

Quant trading

Statistical arbitrage

- Principal: Larger positions for hours to many days
- Opportunistic trade selection
- Tens hundreds of trades / day

Experimentation

- Compare performance in **live trading**
- Returns predictions incomplete
 - risk, liquidity, capital, preferences
- Simulation (aka backtest) too hard
 - Market reaction / impact
 - Latencies \bullet
 - Complexity
 - Counterfactuals: What would have happened?

Experimentation: Complexity

- Example: US stock market
 - 13 lit exchanges
 - "around 50" dark pools [https://www.marketswiki.com/wiki/Dark_pool]

 continuous book, auctions, blind bidding, block trading, internalization orders: limit, market, IOC, FOK, AON, ISO, hide & slide, hidden, post-only

Experimental methods

- Experimental methods b/c
 - Evaluation is expensive: \$\$/time/risk
 - Evaluation is uncertain (noisy)
- Experimental methods
 - Minimize expense
 - Minimize uncertainty

Experimental methods

- Without experimental method
 - Deploy new strategy, make money
 - ==> "My new strategy is great!"
- With experimental method
 - Run new and old strategies side-by-side
 - P{new beats old} = .53, deltaPnL = 700 ± 2200
 - ==> "My new strategy isn't bad."

Make better decisions

Experimental methods

- Your good ideas probably won't work. https://ai.stanford.edu/~ronnyk/ExPThinkWeek2009Public.pdf
 - Amazon reports < 50% of their A/B tests improve metrics
 - Microsoft reports only 1/3
 - Netflix reports only 10%
- My informal polling: 1/10

Experimentation pervasive

- Medicine Food engineering
- Materials science Psychology
- Social science Behavioral Economics
- Web search Manufacturing
- Online advertising
- Social media

- Consumer product design

Example: HFMM A/B test

- Scenario: HFT strategy
 - A: Existing prediction model, across 100 stocks
 - B: Your new model
- Model B looks better than Model A
 - Lower out-of-sample RMSE
 - Higher PnL in simulations
- Next: A/B test in live trading

Example: HFMM A/B test

Example: HFMM A/B test

- Design: lacksquare
 - Which stocks will run Model A, Model B?
 - How many days will this run?
- Measure:
 - Trade and record pnl by stock, day: $p_{s,d}$
- Analyze:
 - Which is (probably) better A or B?
 - Significantly better?

Design: Randomization

- Randomly assign 50 stocks to Model B, $\chi_B = 1$
- Assign other 50 to Model A, $\chi_B = 0$
- Experiment measures $corr(p_{s,d}, \chi_B)$

Design: Randomization

- Correlation w/anything else is confounder bias
 - Ex: All tech stocks in A, all energy stocks in B
 - Ex: High-liquidity stocks in A, low-liquidity stocks in B
 - Ex: ...
- Randomization removes^{*} confounder bias
 - Even if you don't know the confounders

*"removes" == "aims to minimize"

Design: Replication

- PnL is noisy
- Replication: Avg. over multiple days

$$\mu = \frac{\Sigma_d p_d}{N}$$

• Replication decreases "noise" as $1/\sqrt{N}$

 $se = \frac{\sqrt{\Sigma_d (p_d - \mu_d)^2}}{N} = \frac{\sigma}{\sqrt{N}}$

Design: Replication

- Before experiment
 - 1. Estimate se
 - 2. Specify minimum interesting δ_{min} Subjective
 - 3. Solve for N:

$$se = \frac{\sigma}{\sqrt{N}} < \delta_{min}/$$

• (k for safety)

 $_{l}/k => N > \left(\frac{k\sigma}{\delta_{min}}\right)^{2}$

Design: Find N

- Some analysis, k = 2.8:
 - Limit false positives (5%)
 - Limit false negatives (20%)

• Typically 1-2 weeks for real experiments

NB: Quadratic

Measure

- Trade!
- Start small for safety
- Stop if any metrics look very bad / different
 - PnL terrible or wonderful!
 - Trading way too little / too much
 - Sending too many / too few orders
- Log everything, record $p_{s,d}$

Analyze

• Did Model B earn more? Enough to care?

• Statistically significantly more?

 $\Delta_{PnL} = \mu_B - \mu_A > \delta_{min}$

 $t = \frac{\Delta_{PnL}}{se_{PnL}} > 1.64$

Measure: Warning

• Plan: Wait N days, then ask "Is t > 1.64 ?"

- Why not just check every day?
 - Stop when t > 1.64? ------
 - Many false positives!
- You can *monitor* t Just don't stop based on t

- Modern, flexible, efficient method(s)
- A.K.A.
 - Adaptive experimentation
 - Black box optimization
 - Surrogate optimization
 - Model-based optimization

- Can compare A, B
- Also: A, B, C, D, ...
- Also: 1, 2, 3, ...
- Also: $[0,1], [0,1]^D$
- Also: $\{A, B, C, ...\} \otimes \{a, b, c, ...\} \otimes \{1, 2, 3, ...\} \otimes [0, 1]^D$

IOW: BO can optimize your strategy's parameters.

- Other uses:
 - Hyperparameter optimization (HPO) for supervised learning models
 - NNs, trees
 - Optimize parameters of strategy in simulation

Bayesian optimization: Design

• Fit a surrogate:

- y(x) = PnL(parameters)
- Usually Gaussian process regression (GPR)
- Then, maximize y(x) over x:
- $x = \underset{x}{\operatorname{argmax}} y(x)$
- BUT: Surrogate is poor b/c so few measurements

Analyzing, really

Bayesian optimization: Design

Instead:

- GPR outputs E[y(x)] and VAR[y(x)]
- Acquisition function: $E[y(x)] + \sqrt{VAR[y(x)]}$
- Exploration improves surrogate

Bayesian optimization: Measurement

- Same as before
- Go trade

Bayesian optimization: Analysis

- Have you exhausted your budget for experimentation?
- If not, rebuild GPR, design again

- Mixed variable types: Continuous, ordinal (integer), and categorical (labels)
- Multiple metrics: PnL, risk, volume, order rate, ... simultaneously
- Multiple fidelities: Combine simulator results w/live results
- Constraints: Limit risk, capital, market participation
- Operations friendly: Build surrogate from all available measurements

• Build your surrogate as a model of your whole trade.

Bayesian optimization: Tools

- Open source: <u>botorch.org</u>
 - SKLearn:Supervised learning :: BoTorch:Bayesian optimization
 - Flexible, powerful modeling toolkit
- <u>cogneato.xyz</u>
 - user-friendly
 - works with a spreadsheet or Pandas
 - easy to use, produces good designs

Bayesian optimization: Summary

- Surrogate models trade
- Acquisition optimization designs experiments
- Iterate until done