Experimental Optimization in Quantitative Trading
For: Robo-Advisors & Systematic Investing / Vasant Dhar

David Sweet
Introductions

• Me
 • Quant trader
 • Market making, stocks
 • Experimental optimization

• You
 • Trading
 • Supervised Learning?
 • Backtesting/simulation?
 • Reinforcement learning?
 • ChatGPT?
Quant trading

Execution

• Agency: no position risk
• Big customer order ===> many small trades
• Thousands of trades / day
Quant trading

High-frequency market making (HFMM)

• Principal: Small positions for ~10 seconds
• Continuous quoting
• Thousands of trades / day
Quant trading

Statistical arbitrage

- Principal: Larger positions for hours to many days
- Opportunistic trade selection
- Tens - hundreds of trades / day
Experimentation

- Compare performance in live trading
- Returns predictions incomplete
 - risk, liquidity, capital, preferences
- Simulation (aka backtest) too hard
 - Market reaction / impact
 - Latencies
 - Complexity
- Counterfactuals: What would have happened?
Experimentation: Complexity

- Example: US stock market
 - 13 lit exchanges
 - “around 50” dark pools [https://www.marketswiki.com/wiki/Dark_pool]
 - continuous book, auctions, blind bidding, block trading, internalization
 - orders: limit, market, IOC, FOK, AON, ISO, hide & slide, hidden, post-only
Experimental methods

- Experimental methods b/c
 - Evaluation is expensive: $$/time/risk
 - Evaluation is uncertain (noisy)
- Experimental methods
 - Minimize expense
 - Minimize uncertainty
Experimental methods

• Without experimental method
 • Deploy new strategy, make money
 • ==> “My new strategy is great!”

• With experimental method
 • Run new and old strategies side-by-side
 • $P\{\text{new beats old}\} = 0.53$, $\Delta P_{nL} = \$700 \pm \2200
 • ==> “My new strategy isn’t bad.”
Experimental methods

- Your good ideas probably won’t work.

- Amazon reports < 50% of their A/B tests improve metrics

- Microsoft reports only 1/3

- Netflix reports only 10%

- My informal polling: 1/10
Experimentation pervasive

- Medicine
- Psychology
- Behavioral Economics
- Web search
- Online advertising
- Social media
- Food engineering
- Materials science
- Social science
- Manufacturing
- Consumer product design
Example: HFMM A/B test

- Scenario: HFT strategy
 - A: Existing prediction model, across 100 stocks
 - B: Your new model
- Model B looks better than Model A
 - Lower out-of-sample RMSE
 - Higher PnL in simulations
- Next: A/B test in live trading
Example: HFMM A/B test

Design
Determine number of measurements to take

Measure
Trade and measure PnL

Analyze
Decide whether to accept or reject B version
Example: HFMM A/B test

- Design:
 - Which stocks will run Model A, Model B?
 - How many days will this run?
- Measure:
 - Trade and record pnl by stock, day: \(p_{s,d} \)
- Analyze:
 - Which is (probably) better A or B?
 - Significantly better?
Design: Randomization

- Randomly assign 50 stocks to Model B, $\chi_B = 1$
- Assign other 50 to Model A, $\chi_B = 0$
- Experiment measures $corr(p_{s,d}, \chi_B)$
Design: Randomization

- Correlation w/anything else is confounder bias
 - Ex: All tech stocks in A, all energy stocks in B
 - Ex: High-liquidity stocks in A, low-liquidity stocks in B
 - Ex: …
- Randomization removes* confounder bias
 - Even if you don’t know the confounders

*“removes” == “aims to minimize”
Design: Replication

- PnL is noisy
- Replication: Avg. over multiple days

\[\mu = \frac{\sum_d p_d}{N} \]
\[se = \frac{\sqrt{\sum_d (p_d - \mu_d)^2}}{N} = \frac{\sigma}{\sqrt{N}} \]

- Replication decreases “noise” as \(1/\sqrt{N}\)
Design: Replication

Before experiment

1. Estimate se

 2. Specify minimum interesting δ_{min}

3. Solve for N:

 $$se = \frac{\sigma}{\sqrt{N}} < \frac{\delta_{min}}{k} \implies N > \left(\frac{k\sigma}{\delta_{min}}\right)^2$$

(k for safety)
Design: Find N

- Some analysis, $k = 2.8$:
 - Limit false positives (5%)
 - Limit false negatives (20%)

$$N \geq \left(\frac{2.8\sigma}{\delta_{\text{min}}} \right)^2$$

- Typically 1-2 weeks for real experiments

NB: Quadratic
Measure

• Trade!
• Start small for safety
• Stop if any metrics look very bad / different
 • PnL terrible — or wonderful!
 • Trading way too little / too much
 • Sending too many / too few orders
• Log everything, record $p_{s,d}$
Analyze

- Did Model B earn more? Enough to care?

$$\Delta_{PnL} = \mu_B - \mu_A > \delta_{\text{min}}$$

- Statistically significantly more?

$$t = \frac{\Delta_{PnL}}{se_{PnL}} > 1.64$$
Measure: Warning

- Plan: Wait N days, then ask “Is $t > 1.64$?”

- Why not just check every day?
 - Stop when $t > 1.64$? Don’t do this!
 - Many false positives!

- You can monitor t — Just don’t stop based on t
Bayesian optimization

- Modern, flexible, efficient method(s)
- A.K.A.
 - Adaptive experimentation
 - Black box optimization
 - Surrogate optimization
 - Model-based optimization
Bayesian optimization

- Can compare A, B
- Also: A, B, C, D, ...
- Also: 1, 2, 3, ...
- Also: $[0,1]$, $[0,1]^D$
- Also: $\{A, B, C, \ldots\} \otimes \{a, b, c, \ldots\} \otimes \{1,2,3,\ldots\} \otimes [0,1]^D$
- IOW: BO can optimize your strategy’s parameters.
Bayesian optimization

• Other uses:
 • Hyperparameter optimization (HPO) for supervised learning models
 • NNs, trees
 • Optimize parameters of strategy in simulation
Bayesian optimization: Design

• Fit a surrogate:

\[y(x) = \text{PnL(parameters)} \]

• Usually Gaussian process regression (GPR)

• Then, maximize \(y(x) \) over \(x \):

\[
 x = \arg\max_x \ y(x)
\]

• **BUT**: Surrogate is poor b/c so few measurements
Bayesian optimization: Design

• Instead:

\[x = \arg \max_x \left[E[y(x)] + \sqrt{\text{VAR}[y(x)\]} \right] \]

• GPR outputs \(E[y(x)] \) and \(\text{VAR}[y(x)] \)

• Acquisition function: \(E[y(x)] + \sqrt{\text{VAR}[y(x)]} \)

• Exploration improves surrogate
Bayesian optimization: Measurement

- Same as before
- Go trade
Bayesian optimization: Analysis

- Have you exhausted your budget for experimentation?
- If not, rebuild GPR, design again
Bayesian optimization

- **Mixed variable types**: Continuous, ordinal (integer), and categorical (labels)
- **Multiple metrics**: PnL, risk, volume, order rate, … simultaneously
- **Multiple fidelities**: Combine simulator results w/live results
- **Constraints**: Limit risk, capital, market participation
- **Operations friendly**: Build surrogate from all available measurements

- Build your surrogate as a model of your whole trade.
Bayesian optimization: Tools

• Open source: botorch.org
 • SKLearn:Supervised learning :: BoTorch:Bayesian optimization
 • Flexible, powerful modeling toolkit
• cogneto.xyz
 • user-friendly
 • works with a spreadsheet or Pandas
 • easy to use, produces good designs
Bayesian optimization: Summary

- Surrogate models trade
- Acquisition optimization designs experiments
- Iterate until done