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Abstract

We report on the first experimental measurements taken from an easily studied, visually remarkable chaotic scattering
system that we call an optical billiard. In particular, we measure the fractal dimension of the basin boundaries generated by
the reflection of light from various configurations of polished, reflecting spheres. We find that our experimentally determined
fractal dimension values agree well with the values we find from simulations. We also find that depending on the configuration
of the spheres, the boundary can be either a nowhere-differentiable surface or else can possess the topological Wada property
whereby any basin boundary point is simultaneously on the boundary of four distinct basins. Other configurations yielding
other topologies of the chaotic scattering set are suggested for future study. © 2001 Published by Elsevier Science B.V.
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1. Introduction

Chaotic scattering theory may be employed in the
understanding of various physical systems such as
those studied in chemical kinetics [1], celestial me-
chanics [2], cosmology [3,4], and fluid mechanics [5].
We discuss a chaotic scattering system that is useful in
that it can be conveniently studied theoretically [6,7]
and, as shown here, experimentally.

There are many chaotic scattering situations
wherein a scattered orbit may leave the scattering re-
gion in different identifiable ways. In such cases, we
call the collection of initial conditions whose subse-
quent orbits exit the scattering region in the same way
as the basin for that type of exit. Numerical studies of

∗ Corresponding author. Tel.: +1-301-405-1594;
fax: +1-301-405-1670.
E-mail addresses: dpl@complex.umd.edu,
dpl@complex.physics.umd.edu (D.P. Lathrop).

chaotic scattering systems reveal that the sets in state
space separating such basins, called basin boundaries,
can be fractal [8,9]. Fractal basin boundaries also
occur in dissipative chaotic systems [8,9].

The experimental study of basin boundaries has
proven difficult because these sets are non-attracting,
typical initial conditions near these sets lead to orbits
which tend towards regions of state space far from
the basin boundaries, spending only a short time near
the boundaries. One method of studying basin bound-
aries is to set an initial condition, run the experiment
to see to which basin the initial condition belongs
and repeat for many different initial conditions, thus
mapping out some portion of state space showing
where the basins and their boundaries lie. While
this procedure has proven to be very effective when
applied to computer simulations [8,9], it presents
several problems when one attempts to apply it to a
physical system. These problems include the accurate
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determination and placement of many initial condi-
tions, long times associated with a very large number
of experimental runs needed to map out the basins,
and parameter drift over the course of many runs.
Thus, fractal basin boundaries have been rarely stud-
ied experimentally. Two exceptions are Refs. [10,11].
In Ref. [10], the basin boundary for an experimen-
tal dissipative mechanical system with two basins of
attraction was mapped. In Ref. [11], the basins of
attraction for coupled chaotic oscillator circuits were
studied.

As proposed in [12,13], we study systems, one of
which was initially described in [7], which readily
reveal their basins and basin boundaries to the naked
eye. These systems, which we call optical billiards,
consist of polished, reflective surfaces (in the cases
studied here, surfaces of spheres). Relative to the
previously discussed method of basin boundary study
(viz., repeating many successive experiments with
different initial conditions), the optical method (de-
scribed subsequently) is akin to a massively parallel
approach wherein each ray contributing to an image
plays the role of one of the successively repeated ex-
periments in the other method. The configurations we
have studied are shown in Fig. 1. In the configuration
shown in Fig. 1a each of the spheres of radius d is
in contact with two neighbors, but is not in contact
with the other sphere. The distance between the cen-
ters of the touching sphere is d, while the distance
between non-touching spheres is l (d < l <

√
2d).

In the configuration shown in Fig. 1b, all spheres
touch (l = d), and the centers of the four spheres
are at the vertices of a regular tetrahedron. These
optical billiards have proven easy to manipulate and
observe in various configurations. A configuration
similar to that shown in Fig. 1b has been proposed as
a device for distributing infrared networking signals
[14].

We measure the fractal dimension (defined below)
of the basin boundaries of five differently configured
optical billiards by analyzing the digital images of
these billiards. The results compare well to calcula-
tions of the fractal dimension taken from simulation
data, as shown in Fig. 2. The five configurations that
we study and that are plotted in Fig. 2 are (1) � =

Fig. 1. Schematic of configurations of spheres used in this exper-
iment. (a) �, the distance between opposing spheres, ranges from
� = √

2d (configuration 1), where d is the diameter of a sphere,
when the balls lie flat on the table to � = d (configuration 5),
when the balls are all touching (c). (In (c) the scatterer of (a) with
� = d is reoriented so that three of the spheres sit on a horizontal
surface.) (b) Top view of (a).

√
2d (for which the centers of the four spheres are at

the corners of a d × d square); (2) � = 1.32d; (3)
� = 1.22d; (4) � = 1.16d; and (5) � = d (for which
the sphere centers form a regular tetrahedron and all
spheres touch).

In addition, we note that the basin boundaries seen
in configurations 1–4 exhibit a different topology than
the one seen in configuration 5. The basin bound-
ary in configurations 1–4 is a continuous surface.
For configurations 2–4 we claim that this surface is
nowhere-differentiable and fractal (consistent with
this claim, in the two-dimensional sections seen in
the images in Figs. 4–6, the basin boundary appears
to be a continuous, nowhere-differentiable curve). In
configuration 5, the boundary appears more complex
with the four basins intertwined on an arbitrarily fine
scale. In fact, as shown in [7], these basins possess
the Wada property [15] whereby in any arbitrarily
small neighborhood of a boundary point, there exist
points in all four basins [7].
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Fig. 2. Fractal dimension vs. α ≡ �/d . Each value of �/d represents one configuration. The points are ordered and labeled from configuration
5 at α = 1 to configuration 1 at α = √

2. The squares are experimentally measured values and the circles are taken from computer
simulation. The dimension values are measurements of the dimension of the basin boundaries in Figs. 3–7, which are two-dimensional
slices of the full four-dimensional state space of the system.

2. Background

A three-dimensional optical billiard can be consid-
ered as a four-dimensional discrete time dynamical
system mapping a four-dimensional vector describing
an incident ray at the nth reflection from the scatterer
to the (n + 1)th reflection. Here the four-component
state vector specifies the position (two components) at
which a light ray hits the surface of a sphere and the
orientation (two components) of the light ray as it hits
the surface. The time evolution is specified by the rule
that the angle of reflection from the surface is equal
to the angle of incidence, where both angles are taken
with respect to the surface normal (i.e., the reflection
is specular), and, when the reflection is not normal to
the surface, the incident and reflection direction vec-
tors span a plane.

We define the fractal dimension (more specifically,
the box-counting dimension, also called the capacity)
of a set as follows. We cover the set with a grid of
dS-dimensional hypercubes having diameter ε, where
dS is the dimension of the space in which the set in
question is embedded. Calling the number of these

ε-sized hypercubes which contain points in the set
N(ε), we define the fractal dimension, D, by the small
ε scaling of N(ε),

N(ε) ∼ ε−D (1)

A strict definition of fractal dimension would re-
quire this scaling to persist down to arbitrarily small
ε (i.e., D = limε→0[ln N(ε)]/[ln(1/ε)]), but we will
use the term fractal dimension when referring to anal-
yses of our experimental data even though the scal-
ing (1) is necessarily cut off at some minimum length
scale, εmin.

Our basin boundaries divide the four-dimensional
state space into different regions (the basins) and hence
must be at least three-dimensional. They can, however,
be intricately wrinkled and folded so that their fractal
dimension is a non-integer between 3 and 4.

Note that since the pictures in Figs. 3–7 repre-
sent a two-dimensional slice of a four-dimensional
state space, the assumption that the intersection of
this slice with the basin boundary is generic implies
that the fractal dimension of the basin boundary in
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Fig. 3. Image of the system in configuration 1. The image was acquired in color but was converted to grayscale by the transformation
(R′, G′, B ′) = [ 1

3 (R + G + B)](1, 1, 1) for subsequent analysis. The image size is (width × height) 1284 pixels × 150 pixels.

Fig. 4. Image of the system in configuration 2. The image size is 836 pixels × 374 pixels.

Fig. 5. Image of the system in configuration 3. The image size is 2415 pixels × 945 pixels.

Fig. 6. Image of the system in configuration 4. The image size is 1773 pixels × 927 pixels.
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Fig. 7. Image of the system in configuration 5. The image size is 754 pixels × 857 pixels.

the full state space is equal to 2 plus the fractal di-
mension of the portion of the boundary contained in
the slice. Throughout, when we will refer to the di-
mension of the boundaries we will be referring to
the dimension as measured in such a two-dimensional
slice.

We can define a scattering region for our billiard
scatterers in Fig. 1 as the region that is within the tetra-
hedron whose edges connect the sphere centers but
outside the spheres. Note that for Fig. 1c the tetrahe-
dron is regular and none of its edges are in the scat-
tering region, while for Fig. 1a the two edges which
connect opposing spheres are on the boundary of the
scattering region. (We also consider the special case
� = √

2d (configuration 1) for which the sphere cen-
ters are coplanar and the tetrahedron degenerates to a
two-dimensional square d ×d surface.) All orbits that

are bounded for all forward and backward time (t →
±∞) are contained within the scattering region. The
set of all these bounded orbits is ergodic and forms
what we shall refer to as the chaotic invariant set for
our scatterer. If an orbit enters the scattering region
and then leaves it, it never returns. A ray entering the
scattering region has multiple ways to exit. In particu-
lar, there are four exits for the configuration in Fig. 1b
corresponding to exits through the four faces of the
regular tetrahedron, while for Fig. 1a there are two
exits. (In the latter case we can define the instant at
which the orbit exits upward (downward) as occurring
when an orbit leaves the scattering region by crossing
one of the two upper (lower) triangular tetrahedron
faces.)

When one views the billiard, one sees images of
objects outside the exits, generally reflected multiple
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times before reaching the viewer’s eye. For definite-
ness, suppose that there is a red piece of paper just
outside one of the exits. The basins in this system
can be understood by imagining this system in reverse
time. Thus, one sees that each image of the red paper
on the surface of the billiard combined with the angle
at which the system is being viewed is a collection
of initial light ray conditions that will be reflected by
the billiard (in reverse time), eventually exiting and
reaching the red paper. More directly, one could aim
a narrow light beam, e.g., from a laser pointer, at a
reflected image of the red paper in one of the spheres
and note that the light hits the red paper. In dynam-
ical system terms, the initial condition defined by a
point on the scatterer surface in the image of the red
paper and the direction given by the line between this
point and the tip of the laser pointer lies in the basin
of initial conditions which escape through the red pa-
per exit. An image of the billiard in Fig. 1b showing
portions of all four basins via reflections of colored
paper is given in [7], where the Wada property (see
Section 1) of this basin boundary is discussed.

The basin boundaries found in configurations 1–4
have a different topology from the one in configu-
ration 5. The basin boundary in configurations 1–4
divides the state space into basins of the two exit
modes: upward escape and downward escape. That
is, light rays interacting with the billiard may exit
the system upward or downward. The boundary is
a continuous surface. (Here we call a set in the
four-dimensional state space a continuous surface if
it is topologically conjugate to a three-dimensional
manifold, i.e., there is a continuous, invertible corre-
spondence between points in the set and points in a
three-dimensional manifold.) Since we find that this
surface is fractal in configurations 2–4, we conclude
that the surface is nowhere-differentiable in these
cases [9,12,13]. Figs. 3–6 show a two-dimensional
slice through the four-dimensional state space that in-
tersects the boundary on a curve which, for Figs. 4–6
(configurations 2–4), appears to be nowhere differ-
entiable. In contrast, the state space of the system in
configuration 5 contains four basins, and the intersec-
tion of a two-dimensional state space slice with the
basin boundary is not a curve (see Fig. 7). (A set is

a closed curve if it is topologically conjugate to the
unit circle.)

In studies of chaotic scattering systems, points ly-
ing in the basin boundary are typically part of the sta-
ble manifold of a chaotic saddle. A chaotic saddle is
a non-attracting, ergodic, chaotic set, invariant under
forward and backward system evolution. (For exam-
ple, in the case of Fig. 1, the chaotic saddle is contained
within the tetrahedron formed by the sphere centers.)
The stable manifold of the chaotic saddle is the set
of initial conditions that asymptote to the chaotic sad-
dle on forward time evolution and thus never leave
the scatterer. Initial conditions near, but not precisely
on, the stable manifold generate orbits that spend a
long time near the chaotic saddle before leaving the
scatterer. Typical initial conditions on the chaotic sad-
dle behave chaotically, typical initial conditions near
the chaotic saddle experience transient chaotic motion
before exiting the scatterer. The basin boundaries we
study here appear to be stable manifolds of chaotic
saddles because numerical studies show that the num-
ber of bounces a light ray experiences before escaping
the scatterer increases as we get closer to the basin
boundary. Experimental evidence is discussed in Sec-
tion 4.

3. Apparatus

The configurations were constructed with a set of
four polished, reflective spheres. Images were captured
with a digital camera and analyzed using custom im-
age analysis software.

The spheres used in these experiments were AISI
E52100 (chrome alloy). The camera was a Kodak
DCS-460 having 3000 × 2000 pixel resolution. Pic-
tures were taken with a 200 mm lens at f/11 or f/22 and
both +1 and +4 diopters affixed to the end of the lens.
Because the scattering surfaces are curved, light inci-
dent upon them spreads with each reflection, resulting
in large variations in focal distance within the image.
Due to this spreading and the three-dimensional nature
of the scattering system, depth-of-field was problem-
atic and, consequently, only a portion of the image was
properly focused. Images were cropped to the in-focus
portion as the first step in the data analysis, and these
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cropped portions contained from roughly 2 × 105 to
2 × 106 pixels.

Each pixel in the resulting images is described by
a RGB triple of 8 bit integers (R, G, B), which de-
scribes, respectively, the proportion of red, green, or
blue in the pixel.

The light source used when photographing config-
urations 1–4 was a 300 W incandescent bulb mounted
inside an overhead projector. Three 60 W incandescent
bulbs were used to light configuration 5.

4. Methods

Each of the configurations in Fig. 1 can be described
by a parameter, α ≡ �/d , where � is the distance
between the centers of opposing balls, 1 < α ≡ �/d <√

2, and d is the diameter of a ball, d = 7.62 cm. When
α = √

2, the centers of the balls all lie in the same
plane so that each sphere is touching its two neighbors
and the centers of the spheres lie at the vertices of a
square. When α = 1, opposing spheres are touching
which means that each sphere is touching all of the
other three. In this case the centers of the spheres lie at
the vertices of a regular tetrahedron. In the other three
configurations, α is between 1 and

√
2, each sphere

is touching only two others, but the sphere centers
do not lie in a plane. The balls were positioned by
first placing two balls on a flat surface a distance �

apart, then placing the other two balls on stands having

height
√

d2 − 1
2�2.

Two different photographic methods were used
in this experiment. The first method was applied to
configurations 1–4 and the second to configuration 5.
In the first method the system was illuminated from
below through the opening between the four spheres.
By imaging the surface of a sphere from a partic-
ular camera location we are fixing two of the state
space variables — the two angle variables — and,
in effect, making a two-dimensional slice of the state
space. This picture shows bright regions, correspond-
ing to rays originating from the light shone through
the opening between the spheres (the “light basin”)
and dark regions, corresponding to unilluminated ray
paths that do not originate from below the opening
(the “dark basin”). The boundary between light and

dark basins in this slice is taken to be the basin bound-
ary. In the second method, light was shone in through
all four openings so that all points on the surfaces of
the spheres that were lying in basins were illuminated.
This leaves the basin boundary dark. (As discussed
below, regions near the boundary are also dark.)

To implement the first method we placed the spheres
on top of a clear piece of glass mounted over a light
(i.e., the surface of an overhead projector where the
transparencies are normally placed). Between the glass
and the spheres we placed a sheet of white paper to
eliminate direct reflections of the bulb off the spheres,
thus providing a more even light source. Figs. 3–6
show a set of photographs resulting from this proce-
dure. These photographs were taken with an f-stop of
f/11 and a 3 s exposure time.

Notice that the transition from the light region to
the dark region in Figs. 3–6 is not sharp, consistent
with the hypothesis that the basin boundary is the sta-
ble manifold of a chaotic saddle. Light rays creating
the camera image at these points have been reflected
multiple times from the spheres. At each reflection
a beam of rays experiences absorption and spreading
with both effects leading to decreased intensity of the
light. In fact, the image grows darker as we approach
the boundary, indicating that it requires more and more
bounces for a light ray to escape the scatterer as it
comes closer and closer to the basin boundary.

Since the image grows darker as we look closer
to the basin boundary, we would expect that if the
scatterer were lit uniformly from all directions that
the boundary would appear dark and the basins light.
Indeed they do, and we used this technique for con-
figuration 5. The uniform lighting is provided by
keeping the camera shutter open for 10 s and slowly
waving four incandescent light bulbs around the scat-
terer using an aperture of f/22. Fig. 7 shows the image
of configuration 5 used in the data analysis.

5. Analysis

5.1. Analysis of experimental data

The method for analyzing the data in Figs. 3–7
was to identify bright and dark regions and use
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box-counting (Eq. (1)) to estimate the fractal dimen-
sion of the boundary between them, i.e., the basin
boundary.

Ideally, the bright and dark regions in Figs. 3–6
could be distinguished and thus one could identify the
boundary. Similarly, identifying the bright regions in
Fig. 7 would distinguish the four basins from the basin
boundary. These ideal scenarios are compromised by
effects such as the soft transition to the basin boundary
discussed in Section 4 and below.

Practically, bright regions are identified via thresh-
olding: each point in the image is tested to see whether
its intensity (defined as I = 1

3 (R +G+B)) is greater
than some value T, where 0 ≤ T ≤ 255. The pixel is
replaced with the triple (0, 0, 0) — black — if I < T

or (255, 255, 255) — white — if I ≥ T . The appro-
priate value of T could not be chosen a priori, so the
scaling (1) was checked for the entire range of T (at
every twelfth integer value).

Edges were traced (or “detected”) in the thresholded
images (in which each pixel is either black or white) by
declaring a pixel to be an edge pixel if any of its eight
neighboring pixels did not have the same intensity.
Edge pixels were set to black and all other pixels were
set to white.

After processing the image as described above and
in the previous section, values of D in scaling (1) were
determined from linear regression of log N(ε) vs. log ε

and the slope as an estimate of −D. The value of ε

ranged from a minimum of εmin pixels to a maximum
of εmax pixels, equal to half the height or width of the
image, whichever was shorter. Rather than determin-
ing the value of εmin directly, the scaling was checked
over a range of values, 1 ≤ εmin ≤ εmax.

Some results of the analysis for image 5 are plotted
in Figs. 8 and 9. Fig. 8 shows the typical behavior of
N(ε) vs. ε on a log–log plot; the slope of this plot is
taken to be an estimate of −D. Fig. 9 plots the esti-
mates of D for the range of T values and several val-
ues of εmin. We take the plateau in one of these plots
— 108 ≤ T ≤ 255, here — and then estimate the
dimension by taking the mean of D over this plateau
and using the standard deviation as an estimate of the
error. Each experimental point in Fig. 2 is an average
over plateaus in several plots like those in Fig. 9,

Fig. 8. N(ε), the number of boxes of size ε needed to cover the
boundary vs. ε. The negative of the slope of this graph, 1.28, is
taken as an estimate of D, where D is the fractal dimension of the
basin boundary in configuration 3, Fig. 5 thresholded at T = 156.

each created for different values of εmin. The error
bars are the standard deviation of D over these plots.
In configurations 1–4, � (and, thus, α) was deter-
mined to 2%, while in configuration 5, the percentage

Fig. 9. Dimension estimates at various values of T, the intensity
threshold. Each curve represents a different value of εmin, where
εmin ∈ {68, 51, 38, 28, 19, 14} pixels. The hump toward the left
of the plot corresponds to cases where the boundary is entirely
lost in the thresholding process and the image appears noisy. We
average over the points in the plateau, T ≥ 108 (as well as similar
plateaus at other values of εmin), to get a single estimate of the
fractal dimension. Such estimates for each configuration are given
in Fig. 2.
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Fig. 10. Basins in a simulation of configuration 3. White (black) points represent initial conditions that exit downward (upward) from the
billiard. (a) A patch of initial conditions was chosen on the inward facing surface of one of the raised spheres, call it sphere S (see Fig. 1)
each with initial incident direction vector pointing parallel to the line connecting the centers of S and the opposing sphere. (b) Zoom on basin
boundary in (a), the fractal dimension of images like (b) were measured for each configuration using the uncertainty dimension technique.

error in � was as small as that in d, the diameter of
the balls (much smaller than all other errors in our
experiment).

5.2. Simulation

We have performed simulations of these billiard
systems to compare with the experimental results.
We have found that the basins and their boundaries
appear qualitatively similar, and the fractal dimen-
sions determined from the experiment and the sim-
ulations agree closely in all five configurations (see
Fig. 2).

Fig. 10a shows a two-dimensional slice of the state
space of a simulation of configuration 3. A patch of
initial conditions was chosen on the inward facing sur-
face of one of the raised spheres, call that sphere S
(see Fig. 1) each with initial incident direction vec-
tor pointing parallel to the line connecting the cen-
ters of S and the opposing sphere. Initial conditions
that exit upward are colored black and initial con-
ditions that exit downward are colored white. The
basin boundary — the boundary between the two col-
ors — is qualitatively similar to that found in Fig. 5.
The fractal dimension of this boundary, as seen in
Fig. 10b, and the boundary in similar images for the
other four configurations were measured using the
uncertainty dimension technique of [8] (a technique
which gives the box-counting dimension [16]), see
Fig. 2.

6. Possibilities for future study

Optical billiards offer potentially rich ground for fu-
ture experimental study. As examples, in this section
we discuss two other configurations displaying topolo-
gies different from those we have studied in Sections
1–5.

6.1. Hairy rings

The configuration we discuss in this section is ob-
tained by starting with configuration 5, and lifting the
top sphere up (keeping its center equidistant from the
other three spheres). This creates a configuration with
two exits, upward and downward through the central
hole bounded by the three bottom spheres (Fig. 11).
First note that if the top spheres were removed from
the scatterer altogether, the three lower spheres would
create a basin boundary with dimension 1. Since this
boundary set is a closed curve, we refer to it as a
“ring”. When the top sphere is returned to its lifted
position, the smooth basin boundary ring is reflected
in it and the tops of the lower three spheres over and
over creating a fractal set that contains infinitely many
“hairy rings”, i.e., each point in each ring component
of the basin boundary has other parts of the boundary
set limiting on it from the exterior of the ring. The
points in the image that are outside the rings are in
the basin of upward escape. The computer generated
plots in Fig. 12 shows the escape times — the number
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Fig. 11. An alternative optical billiard. (a) Schematic. (b) Front
view of (a).

of bounces the orbit experiences before escaping the
scattering region — of two sets of initial conditions.
(Fig. 12b is a blowout of the boxed region in Fig. 12a.)
The intensity of the plotted points increases with the
escape time (number of bounces). Note that the union
of the interiors of all of the rings is in the basin of
downward escape from the scattering region and the
rest of the image is in the basin of upward escape. For
the case shown in Fig. 12, numerical determination of
the basin boundary dimension by the uncertainty di-
mension technique yields D = 1.43.

6.2. Cantor dust

As another example, if we, again, start with config-
uration 5, but now pull all of the spheres apart so that
the distance between any two spheres is the same as in
Fig. 13 (i.e., the centers of the spheres are still on the
vertices of a regular tetrahedron, but this tetrahedron
is large enough so that the spheres are not touching).
In this case the surfaces of the spheres do not sepa-
rate different types of exits. Hence, the dynamics does
not define distinct basins. Although there is no basin

Fig. 12. (a) Escape times for a grid of initial conditions chosen
on the bottom surface of the top sphere each with initial incident
direction vector pointing straight upward. Brighter points corre-
spond to higher escape times. The points that are on the stable
manifold are approximated by the brightest points in the plot. (b)
Blow up of box in (a) straddling boundary of large ring.

boundary in this case, there is still a chaotic saddle
and its stable manifold, both of which are fractal [6].
This stable manifold appears, in section on the surface
of a sphere, as a Cantor dust as shown in the com-
puter generated plot in Fig. 14. (We say a closed set
is a Cantor dust if it is fractal and completely discon-
nected, i.e., no two points in the set can be connected
to each other by a curve that does not leave the set.) In
Fig. 14 we have colored initial conditions starting on
the surface of the top sphere with incident angle di-
rectly upward so that the brighter points in the plot cor-
respond to initial conditions that generate orbits that
bounce more times before escaping the scatterer (as
in Fig. 12). Noting that points in the stable manifold
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Fig. 13. Schematic of an alternative optical billiard.

bounce an infinite number of times (i.e., never escape
the scatterer) and that the map is piecewise continuous
(so that points nearer the stable manifold evolve like
orbits on the stable manifold for longer times), we see
that the plotted points are a good approximation to the
stable manifold (in this two-dimensional slice). To ex-
perimentally view this stable manifold, one could use
the technique used for configuration 5. Initial condi-
tions which are closer to the stable manifold will ap-
pear darker (for reasons discussed in Section 4), so
thresholding the image could eliminate all but a set of

Fig. 14. Escape times for a set of initial conditions chosen as in Fig. 12. Points that are on the stable manifold form a Cantor dust in this
two-dimensional slice of the state space. See caption of Fig. 12 for more details.

points approximating the stable manifold. One might
expect a better approximation to be had from spheres
with higher reflectivity (e.g., spheres with a silver coat-
ing) as light could bounce between the spheres more
times before reaching to becoming too dark to see,
thus, making the darkest regions of the image smaller.
With our setup we were unable to get good results for
this configuration, possibly because our spheres had a
reflectivity that was too low.

6.3. Ellipsoid in a pipe

Surface shapes other than spherical are also of inter-
est. One could potentially fashion a reflective ellipsoid
and place it in a vertical reflective rectangular tube
with the longest axis of the ellipsoid along the longest
axis of the tube to create the billiard studied in [12,13].
The basin boundary in this system is a continuous,
nowhere-differentiable surface, but, because of its
symmetry about the horizontal midplane of the ellip-
soid, its fractal dimension is smaller than the value pre-
dicted for typical systems by the conjecture of [17,18].
Tilting the ellipsoid slightly restores agreement with
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this formula [12,13]. This effect could be studied
experimentally using the techniques discussed above.

6.4. Decay time

Finally, one might measure quantities describ-
ing these systems other than the fractal dimension.
One quantity of importance in the study of chaotic
scatterers is the characteristic decay time τ : sprin-
kle a large number of initial conditions in a region
intersecting the stable manifold of the chaotic sad-
dle. After n � 1 reflections, the number of orbits
remaining in a finite-sized region containing the
entire chaotic saddle decays like exp(−n/τ). This
defines the decay time τ . One important aspect of this
quantity is that it is conjectured to be related to the
fractal dimension [17,18]. The decay time could be
measured experimentally by sending short (picosec-
ond) laser pulses into the scatterer. The amount of
light escaping the scatterer at times shortly after the
pulse should decay exponentially with characteristic
time τ .

7. Conclusion

Optical billiards offer a convenient way of exper-
imentally studying and gaining intuition for chaotic
scattering systems. We have described experimental
techniques for measuring the fractal dimension of
basin boundaries and other stable manifolds, observed
basin boundaries having two distinct topologies, and
found that fractal dimension measurements agree well
with simulation.

The optical billiards we have studied pos-
sess basin boundaries that are either continu-
ous, nowhere-differentiable surfaces, or are Wada
boundaries. The images in Figs. 4–6 represent the
first experimental observations of the continuous,
nowhere-differentiable surface topology, and Fig. 7
represents the first experimental study of Wada bound-
aries. Likewise, Fig. 2 shows the results of the first
experimental measurements taken on these types of
boundaries.

Basin boundaries for chaotic scatterers in three-
dimensional space can be readily visualized and
studied. A few reflective surfaces may be easily
manipulated into various configurations and the ge-
ometry changed as the viewer changes the positions,
orientation, and lighting of the scatterers. This sort of
experimentation can be performed at any desk, e.g.,
with four silver Christmas tree ornaments, but data
taking may require special surfaces. (In fact, commer-
cially available Christmas ornaments are silver coated
on the interior of a hollow, glass sphere leading to
reflections from both the inner and outer surfaces.)

We believe that optical billiards offer an opportu-
nity for interesting future study. In Section 6 we men-
tion some possible candidates for future investigation,
although there are surely many others.
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