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We analyze a hard-walled billiard chaotic scattering sys-
tem in three spatial dimension. Our analysis of this system
tests a conjectured formula for the fractal dimension of “typi-
cal” non-attracting chaotic sets in higher-dimensional systems
(e.g., time-independent, Hamiltonian systems with more than
two degrees of freedom). It also shows the occurrence, in a
chaotic scattering system, of a fractal basin boundary whose
structure is that of a continuous, nowhere differentiable sur-
face. A ray optical experimental realization of the billiard is
suggested, and would offer the possibility of a physical real-
ization of this basic type of basin boundary structure.

Fractal geometry is a fundamental attribute associated
with chaos in a variety of situations. The most well-
known is the common occurrence of fractal attractors
[the sets in phase space to which orbits tend with time
are called attractors|, and such fractal sets have also been
called “strange attractors.” In addition to chaotic attrac-
tors, nonattracting chaotic sets (also called chaotic repel-
lors) are also of great practical interest. [A nonattracting
chaotic set is one for which orbits placed precisely on the
set move around chaotically, and for which orbits placed
near the set (but not precisely on it) are repelled from the
set and move away.] In particular, nonattracting chaotic
sets arise in the consideration of chaotic scattering, and
fractal basin boundaries [1]. [A basin is a region of state
space such that orbits from initial conditions in that basin
yield a particular outcome; e.g., they all go to a partic-
ular attractor, or, in the case of scattering, they all are
scattered in a particular way (in our subsequent example,
“scattered up” or “scattered down”).] In these situations
the fractal nature of the nonattracting chaotic set leads
to difficulty in prediction of the outcomes resulting from
initial conditions (this is one of the basic challenges to
determinism from the existence of chaos). For example,
in the case of fractal basin boundaries the probable er-
ror in the prediction of an outcome typically scales as a
power in the uncertainty with which the initial condition
is known, and the power law exponent is quantitatively
given by the dimension of the state space minus the frac-
tal dimension of the boundary [1].

In this paper we discuss a nonattracting chaotic set
resulting from a particular chaotic scattering problem.
This example is of interest from several points of view:

(1) Tt provides an example illuminating the applica-
bility of a conjectured formula [2,3] giving the fractal di-

mension of higher-dimensional nonattracting chaotic sets
in terms of their Lyapunov exponents and exponential es-
cape times (defined subsequently). (This formula has not
been previously tested by numerical experiments.)

(2) The example reveals a new structure for invari-
ant sets of chaotic scattering systems with more than
two degrees of freedom. In particular, we find fractal
basin boundaries that are continuous surfaces that are
not smooth; they are “wrinkled” on arbitrarily fine scale
(nondifferentiable) [4].

(3) As discussed at the end of the paper, the example
appears to be readily amenable to an optical experimen-
tal realization (in which the orbits are light rays). In such
a realization the stable manifold and its fractal structure
are in principle observable “by eye.” (In general, experi-
ments observing the structure of fractal basin boundaries
[5,6] are rare due to the inherent difficulties they present.
These difficulties are absent in our suggested realization.)

The system studied is shown in Fig. 1. An ellipsoid is
placed in an infinitely long (in z) tube with cross section
as shown in Fig. 1(b). We consider a freely moving
point particle experiencing energy-conserving, specular
reflection from the walls of the tube and the surface of the
ellipsoid. We shall consider two cases: (i) the major axis
of the ellipsoid is perpendicular to the z — y plane, and
(ii) the major axis of the ellipsoid is tilted with respect
to the z-axis and lies in the y — z plane. In both cases
the center of the ellipsoid is located in the center of the
tube (the origin).

We construct a map by recording the particle posi-
tion (we use cylindrical coordinates, (z,¢)) and direc-
tion (v;,ve) at each bounce from the ellipsoid. (We set
[#] = 1 since energy is conserved.) After the particle
passes the top of the ellipsoid with v, > 0 or the bot-
tom with v, < 0, it continues toward infinity. When this
occurs we say that the particle has escaped.

We begin by considering case (i) where the major axis
of the ellipsoid is vertical. Orbits of the map started
in the manifold z = 0,v, = 0 (denoted A) never leave
it but bounce around chaotically in the ¢ and v4 coordi-
nates. In A, the particle sees the two dimensional billiard
shown in Fig. 1(b). This billiard has the property that
almost every orbit comes arbitrarily close to any point in
its phase space. Thus, A is a two dimensional, ergodic,
invariant set. For typical orbits with respect to the nat-
ural measure on the invariant set [7], this system has a
Lyapunov exponent pair +hg characterizing motion in A
and another, +h_, characterizing motion toward or away
from A.

When the ellipsoid is given a small tilt we find that the
ergodic, chaotic, invariant set, A, changes its character



from a two dimensional planar set to a set with fractal
dimension greater than two. In either case (i.e., tilted or
untilted) the stable manifold of A (which we denote SM)
is of particular physical importance in that it divides the
space of initial conditions into two regions (basins), one
yielding orbits that eventually escape to z — +o0o and
the other, orbits that escape to z — —oo.

Figures 2(a) and 2(b), corresponding to the untilted
and tilted cases, respectively, show two dimensional cross
sections of the full phase space of the basins of z — o0
(white) and z — —oo (black). We subsequently present
evidence that the boundary between black and white ap-
pears to be a continuous, nowhere differentiable curve.
Points on the boundary do not escape but, rather, asymp-
tote to A (i.e., they are on SM).

In the following, when we numerically consider the case
of the tilted ellipsoid, we shall consider the tilt angle to
be small. In this case the Lyapunov exponents for typical
orbits with respect to the natural measure [7] on A are
approximately unchanged from their values obtained in
the case of zero tilt, and we continue to denote them
by h. and hg. Considering a chaotic scattering system
with Lyapunov exponents £h, and +hgy, with respect to
the natural measure, the result of [2] and [3] is that for
typical systems the dimension (information dimension of
the measure [7]) of SM is

D=4—(ho1) ", (1)

when h,7 > 1, where h, = maz(h. hg). In (1) the quan-
tity 7 is the exponential escape time from A defined as
follows. Imagine that we sprinkle a cloud of initial con-
ditions in a region including the nonattracting chaotic
set A. As time increases almost all of them eventually
leave the vicinity of the set, and there is a characteristic
escape time, 7, such that, at late time, the fraction of
the cloud still in the vicinity of the set decays with time
t as exp(—t/7). For the case we consider, we find that
hg > h; for hyr > 1, and, thus, hy = hg in (1).

We find that Eq. (1) holds in the tilted case, but not
in the untilted case. The fact that (1) is violated in the
untilted case is related to the original conjecture [2,3]
which (like the Kaplan-Yorke conjecture [8] for chaotic
attractors) claims that the given dimension formulae [in
this case Eq. (1)] only apply for “typical” systems. Thus,
the issue of what constitutes a typical system is central
to the determination of dimension from Lyapunov expo-
nents. At present, there is no rigorous formulation of
typical for this purpose. Thus, it is important to address
this question through examples, such as the present bil-
liard system [9].

When the ellipsoid is not tilted, analysis given subse-
quently shows that the SM dimension is [9]

D=4—(h,+71 ') /hgforhy > h, +7 " (2)

Since this formula is valid only in the special case where
the ellipsoid has no tilt, we call the untilted ellipsoid

scattering system atypical. [In the case of very small tilt,
InN (¢) scales linearly with In(1/¢) with slope given by
(2) for € S e, and subsequently, for e < €4, CrOSSes over
to slope given by (1) (here ¢, is a small tilt-dependent
crossover value). In such a case the dimension, which is
defined for the £ — 0 limit, is that given by (1).]

The dimension of the stable manifold of A for these
systems was calculated numerically for several values of
hgT. In these calculations hyT was varied by changing
the height of the ellipsoid (while the width of the el-
lipsoid remained fixed). The box-counting dimension of
SM was computed using the uncertainty dimension tech-
nique [1,10,11] . This technique gives the dimension of
the basin boundary, but, as discussed above, the stable
manifold forms the basin boundary. As shown in Fig. 3,
the results from the computation agree reasonably well
with (1) and (2). The box-counting dimension is an up-
per bound to the information dimension. In examples
where the two can be calculated (e.g., for attractors)
their values commonly turn out to be very close. Since
SM divides the space, its box-counting dimension is at
least three. Thus, consistent with the data of Fig. 3, we
expect that the box-counting dimension is three where
(heT)™' > 1 (hg > h, + 1) for the tilted (untilted) case.

To illustrate the dimension formulae and the possible
existence, for our chaotic scatterer, of a basin boundary
structure in the form of a continuous nowhere differen-
tiable surface, we consider the untilted case. In this case
the essential property implied by the symmetry of the
untilted configuration is that, if 2 = v, = 0 initially, then
z =wv, =0 for all time. Let = (z,v,) and ¢ = (¢, Vg)-
For points near A (i.e., |Z] < 1) we can expand the map
function in Z to obtain

Zn+1 = DMZ((ZTL)ZTL + 51\22 (Zna gﬂ)

-

J;n-l-l = M¢(<;n) + 6M¢(En: d’n)

DM, (¢) is a 2x2 matrix. DM, (¢)Z has Lyapunov ex-
ponents +h,. M, is a 2D map [cf. Fig. 1(b)] with
Lyapunov exponents £hg. The q_g motion is bounded.

The fixed point in Z at Z = 0 (for all @) corresponds
to A. Thus §M(0,) = 6M4(0,$) = 0. [In fact, §M,
is O(|2]), and by symmetry 61,(Z, ) is O(|2*).] Since
the dimension of SM in a region arbitrarily near A (i.e.,
for small |Z]) is the same as in any other region, we can
neglect §M, and 6]\7[¢ for the purpose of calculating the
dimension of SM. In that case we obtain

2n+1 = DMZ((ER)ZTH $n+1 = M¢((Eﬂ) (3)

It is still not possible to analyze the system (3) for our bil-
liard problem in a rigorous way. To proceed we therefore
replace DM (¢) and My(¢) by functional forms that are
convenient for analysis and that preserve the basic struc-

ture of the billiard problem. We choose for M¢, the cat



map, ]\2¢,(¢_;) = C¢modulo 1 where C is the cat map ma-

-

trix (Cll = 2, 012 = 021 = 022 = 1), and for DMZ(QZS)
we choose

o =y 557

The Lyapunov exponents for this system, +h, and £hg,
are h, =In X and hy = In B, where B is the largest eigen-
value of C, namely B = (v/5 + 1)/2. Vertical (parallel
to z) line segments will be stretched by a factor of A on
each iterate. Thus, the distance from the invariant set
to a nearby orbit increases by a factor of A with each
iterate. The exponential escape time is therefore given
by e™7 = A", or 7 = (In X)L

Since Z is taken to evolve by the linear relationship
Zn+1 = DM ,($)Z,, we have that for an orbit starting at
a given ¢, whether or not |Z] decays exponentially toward
A with time (i.e., Z'is on SM) depends on the orientation
of 7 and not on |Z]. Thus the equation describing SM
is of the form z = 2,(#,v.) = f(¢)v,. In particular, SM
pictured in z versus v, for some fixed value of 5 is a
straight line passing through z = v, = 0. (Note, however,

that the function f(¢) can be very irregular causing SM
to be fractal.)

-

To find f(¢) we define x = z/v,, and substitute
z = xv, into (3). We obtain xp41v.,,, = AXn¥:, +
(sin 2w )z, , V2, = A 'vs,. Dividing the first equa-
tion by the second equation, v, , and v., cancel and we
obtain for x

Xnt1 = A2xn + Asin(27¢,,). (4)

Equation (4), together with ¢n41 = Cé, modulo1, con-
stitutes a three dimensional map system [as opposed to
the four dimensional map system (3)]. For initial con-
ditions in x > f(¢) (x < f(¢)) we have that x — +oo
(x = —0). Thus, if we iterate an initial condition back-
wards in time it tends to the surface f($). We make use
of this to find f (5) Imagine that we iterate from an
initial 50 = 5 forward n steps to C"d_; modulo 1, choose
Xn, and then follow (4) backward to obtain the initial
condition xo that iterates to x,. Letting n — 0o, and

—_

fixing xn, we have xo — f(¢). This gives

-

F(@) = =213 AP sin[2rC™ ), (5)

m=0

which, for (InA?)/InB = 2h./hy < 1 is known [12]
to be a continuous, nowhere differentiable function (a
Weierstrag function of dimension 3 — 2h,/hy). Further-
more, using the fact that h, = 77! for this case, the
dimension of the graph x = f(@) is 3 — 2h./hy [12], and
the dimension of the graph of z = f(#)v, in the fully four
dimensional phase space is thus given by (2).

We now conclude by discussing the possible experi-
mental realization of our billiard system. Imagine plac-
ing a mirrored ellipsoid inside a tube (as shown in Fig.
1) which is mirrored on its inside. Here light rays play
the role of orbits. They reflect from the mirrored sur-
faces in the same way that a test particle would bounce
from a billiard (i.e., specularly). Imagine that the tube
is oriented vertically with its bottom end (which is open)
placed on a red surface and that the ellipsoid is suspended
in the tube. In this configuration an observer looking in
the top of the tube sees multiple reflections of the red
surface that is at the bottom of the tube. Since rays
whose directions are reversed retrace the same path, we
can think of orbits as starting from the retina of the ob-
server’s eye (or film of a camera) passing through the
pupil, bouncing around in the scatterer, and then exit-
ing either through the bottom (red) or the top (not red).
The boundary of the red region seen on the surface of
the ellipsoid or the walls is precisely the basin boundary
that we have discussed above. In preliminary work (with
J.A. Yorke [13]) we have already applied this approach
to a chaotic scatterer formed from four mirrored spheres
to experimentally study a different general type of basin
boundary structure known as a Wada boundary (a Wada
boundary is a boundary separating three or more basins
such that every boundary point is a boundary point for
all basins).

There have been few experimental studies of basin
boundaries because it is difficult to experimentally carry
out the numerical technique of following orbits for many
initial conditions chosen on a grid. The difficulty with
this approach is that it is time consuming; it is often
not possible to prepare initial conditions sufficiently pre-
cisely to observe small scale basin boundary structures,
and experimental parameters may drift over the course
of many runs. Nevertheless, in one case [6] this program
was successfully carried out using an electronic circuit as
the experimental system. In another work, Cusumano
and Kimble [5] have formulated a new experimental pro-
cedure for studying basin boundaries which uses many
initial conditions but not from a grid. To our knowledge,
these two works and the four-sphere billiard discussed
above, are so far the only experimental investigations of
fractal basin boundaries. In contrast, there have been
a large number of papers that have experimentally real-
ized fractal stucture in chaotic attractors. This disparity
in the situations of attracting and nonattracting chaotic
sets seems to be largely due to the disparity in the ease
of experimental realization for the two cases. We believe
that optical billiard systems, like those described above,
offer a convenient avenue for experimental investigation
of the various general types of basin boundaries.
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FIG. 1. The scattering system in the (atypical) case of ver-
tical orientation of the ellipsoid. (a) A hard ellipsoid is placed
inside a hard tube with cross-section as shown in (b). (The
circle in (b) is the cross section of the ellipsoid.) R = 25,
d = 10 and the radius of the ellipsoid at z = 0 is 5.
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FIG. 2. Basins for z — oo (white) and z — —oo (black).
ze(—3,3), y = 5.1, z¢(—2.5,0), v = 0, v = .1 ,and vy is
given by the condition |] = 1 (numerical work was done in
the 6D phase space) for (a) the untilted case and (b) a tilt of
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FIG. 3. Comparison of dimension formulae, Eq. (1) and
Eq. (2), with numerical estimates (indicated by + and e).
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