Bayesian Optimization in O(N)

Speeding Automated Design and Discovery

Bayesian Optimization

- Engineering design
- Recommenders, ads
- Aerospace
- Pharmaceuticals
- Chemistry
- Materials

- Low-boom supersonic aircraft wing
- TikTok, Instagram, Spotify, etc.
- New catalyst, hydrogen fuel
- Better Skin Absorption
- CO₂ capture process
- Fast charging EV batteries
- Self-driving labs: BO + Robotics

Timescales

- Days-weeks: Website A/B testing
- Hours day: Material synthesis
- 10's of seconds minutes: Robotics simulation, industrial process simulation

Many Observations

- Observation = Design + Evaluation
- Short time scales + computer clusters ==> Many observations
 - Example:
 - 100 observations / [10 minute round] on a cluster
 - x 100 rounds = 10,000 observations

Dimensionality

- Parameters: weights, thresholds, timeouts, lengths, materials, chemicals
 - "parameter" == "dimension" in Bayesian optimization
- More parameters ==> More designs to evaluate
- High dimensionality?
 - ==> Need many observations
- Have capacity for many observations?
 - ==> Can investigate high dimensions

Chicken, Egg

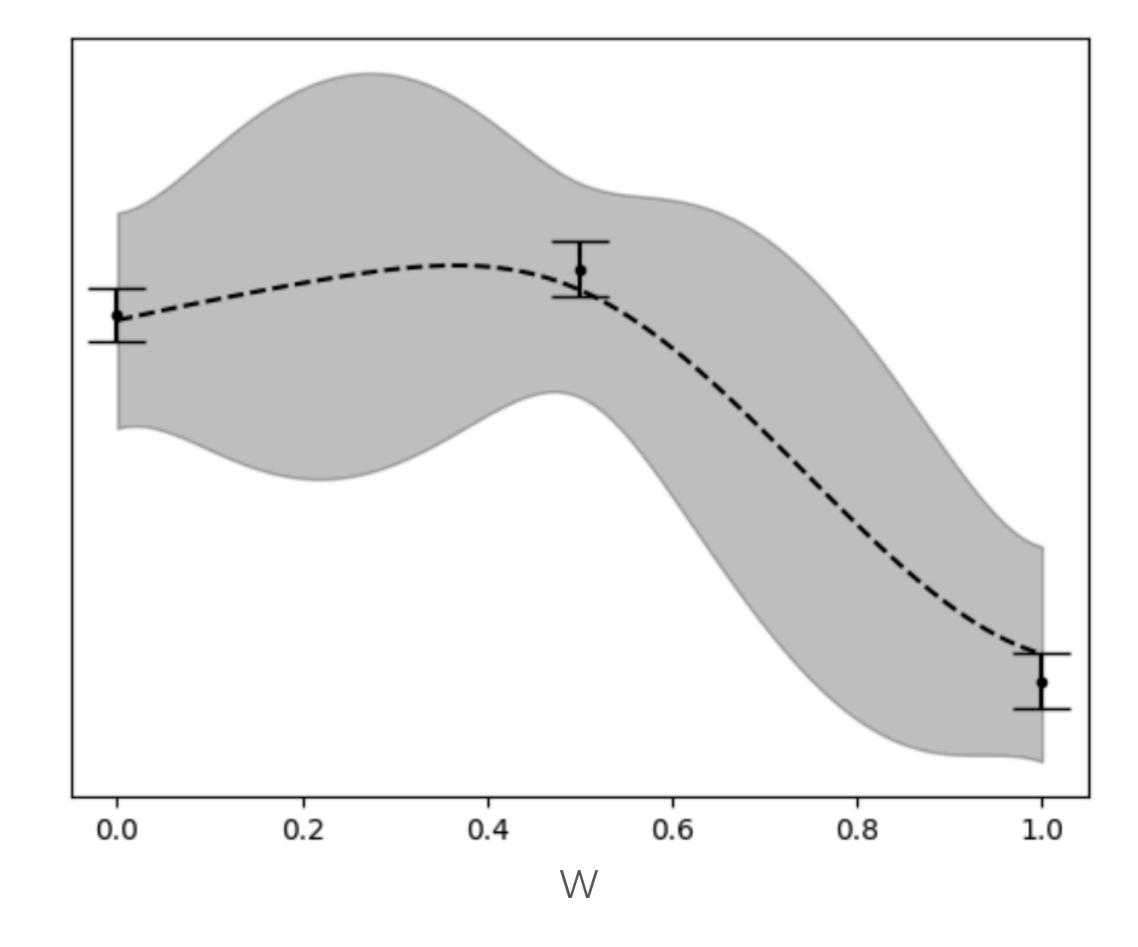
Bayesian Optimization Algorithm

- Observations: $\mathcal{D} = (x_i, y_i)$
- Fit a surrogate to \mathcal{D} : $y(x) \sim \mathcal{N}(\mu(x), \sigma^2(x))$
- Optimize surrogate: $x_{arm} = \arg\max\alpha(\mu(x), \sigma(x))$
 - $\alpha(\cdot, \cdot)$ is acquisition function
- Evaluate x_{arm} via experiment or simulation

Repeat until satisfied with evaluation

Poor Scaling

- Gaussian process (GP), usual surrogate
- Epistemic uncertainty: Knows what it knows
- ullet Excellent when few observations, N
 - Query takes $O(N^2)$
- Slow when N is large, many observations

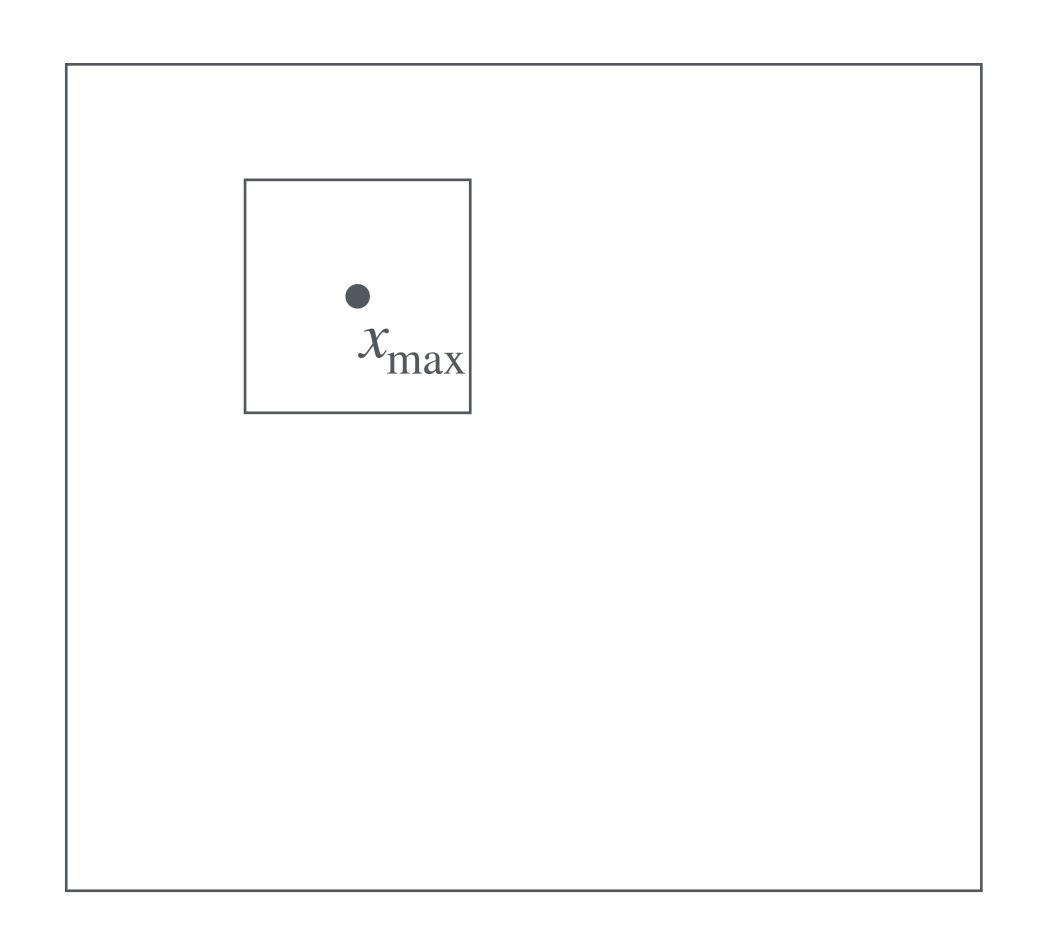


Scaling to Many Observations

- BOMO: Bayesian Optimization with Many Observations
- Alternative surrogates:
 - Random forest, neural networks: O(N), but fit is complex
 - Parzen estimator (Optuna): O(N)

Scaling to Many Observations

- TuRBO: Restrict to trust region
 - Need fewer queries for arg max
 - Maybe fewer queries for fitting as well
 - Still $O(N^2)$



Epistemic Nearest Neighbors (ENN)

• Find K nearest-neighbor observations to x, (x_i, y_i) , set

$$\mu(c \mid x_i) = y_i, \ \sigma^2(x \mid x_i) = \|(x - x_i)\|^2$$

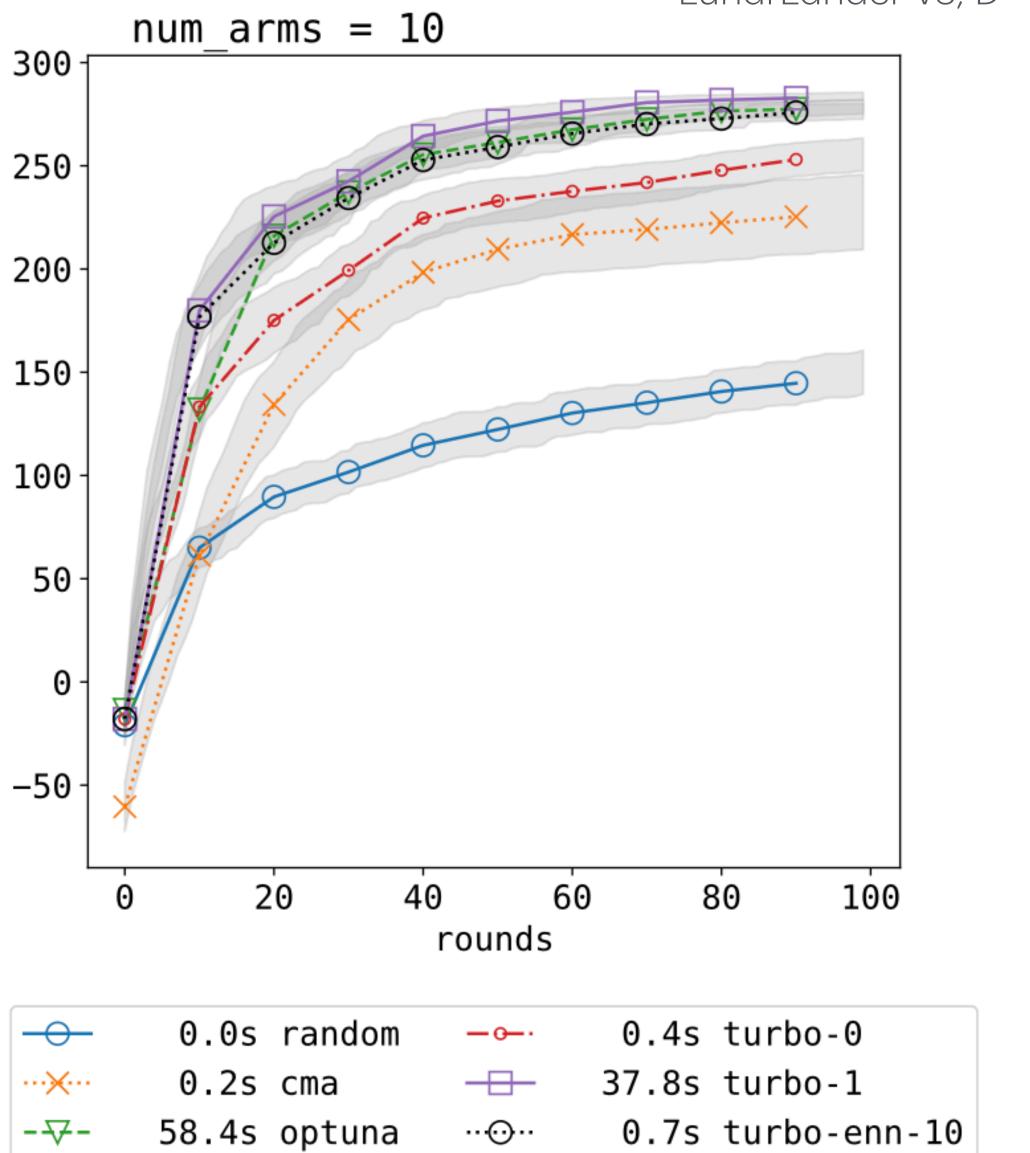
• MVUE, assuming (asserting) independence of observations

$$\mu(x) = \frac{\sum_{i}^{K} \sigma^{-2}(x \mid x_{i})\mu(x \mid x_{i}, y_{i})}{\sum_{i}^{K} \sigma^{-2}(x \mid x_{i})} \qquad \sigma^{2}(x) = \frac{1}{\sum_{i}^{K} \sigma^{-2}(x \mid x_{i})}$$

TuRBO-ENN

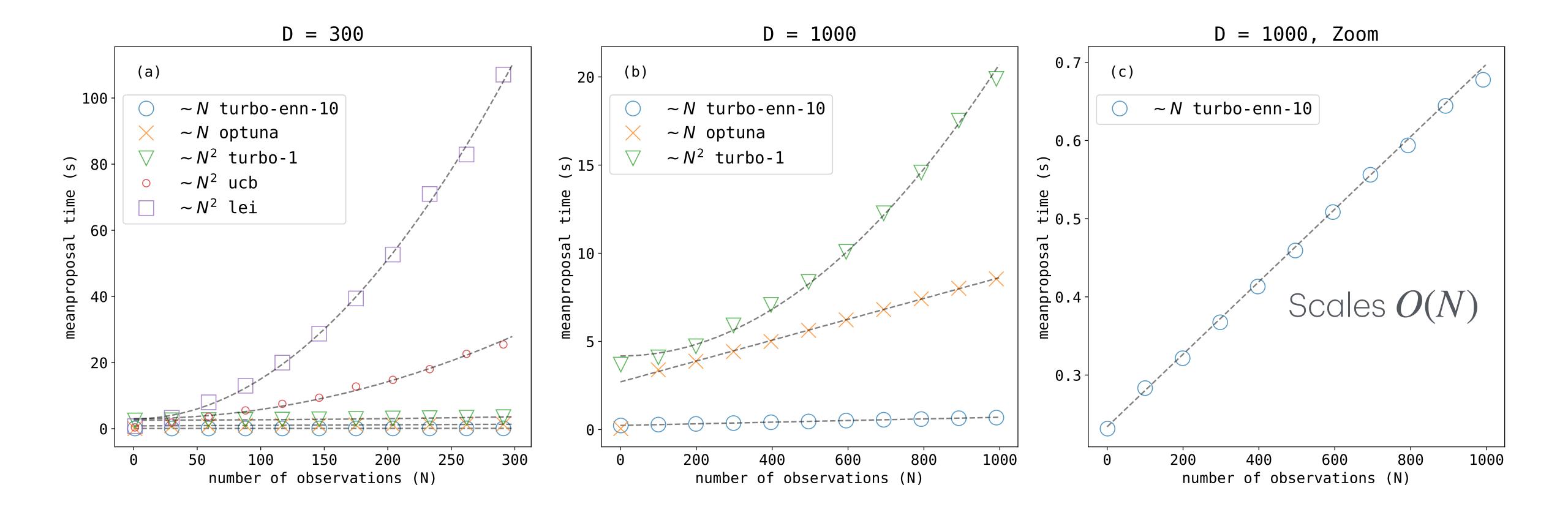
- Compared to TuRBO
 - Speedup 50x (= 37.8s / 0.7s)
 - Comparable quality designs
- N = 1000

LunarLander-v3, D= 12



Turbo-ENN

Speedup increases w/N



Turbo-EIII

Method	Surrogate	Acquisition	Cost / proposal	RL Score	RL Time
random	none	Uniform sample	O(1)	$0.079 \pm .018$	0.00023
CMA-ES	none	Gaussian sample	O(1)		
optuna	Parzen KDE	Modified EI	O(N)		_
lei	GP	Log-EI	$O(N^2)$		
ucb	GP	UCB	$O(N^2)$		
		Thompson sample			
turbo-1	GP	trust region	$O(N^2)$	0.35 ± 0.017	1.0
		Uniform sample			
turbo-0	none	trust region	O(1)	$0.25\pm.008$	0.008
		Pareto (μ, σ)			
turbo-enn-10	ENN ($K = 10$)	front	O(N)	$0.32 \pm .005$	0.014

Works

Nine simulators

Fast

Summary

- Turbo-enn
- Designs 10 100X faster
 without loss of quality
- O(N) queries
- No fitting step

Taking the GP Out of the Loop

David Sweet

Department of Computer Science Yeshiva University New York, NY 10033 david.sweet@yu.edu

Siddhant anand Jadhav

Department of Data Science and Visualization Yeshiva University New York, NY 10033 sjadhav1@yu.edu